
AVL Trees

See Section 19.4of the text, p. 706-714.



The idea of a binary search tree is great, but in 
practice they might not be very good structures  for 
storing data.  Here are two correct binary search 
trees for the numbers 1-7:
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This tree is balanced. All of the nodes at a 
given depth have the same numbers of nodes 
in their left and right subtrees.  The find( ), 
add( ) and remove( ) algorithms for balanced 
binary trees all have  O( log(n) ) running time.
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This is a binary search tree that is about as 
unbalanced as a tree can get.  If we build a binary 
search tree by adding nodes in increasing or 
decreasing order, it defaults to a linked list.



Note that the add( ), remove( ), and find( ) 
algorithms for binary search trees all start and the 
root and walk down a path to a leaf.  The worst-case 
numbers of operations for these algorithms are all 
proportional to the height of the tree.  If the tree is 
balanced those operations will all be O( log(n) ); if 
the tree is not balanced they may be O( n ).



AVL trees are self-balancing Binary Search Trees.  
When you either insert or remove a node the tree 
adjusts its structure so that the height remains a 
logarithm of the number of nodes.  No matter 
what order we insert the nodes, we can search an 
AVL in O( log(n) ) time.

AVL trees were the first such self-balancing trees.  
They were invented by Georgy Adelson-Velski and 
Evgenii Landis in 1962.   



Definition: An AVL tree is a Binary Search Tree with 
the additional property that for every node in the 
tree, the left and right subtrees have height that 
differ by at most 1.  We say that the height of a null 
tree is -1 and the height of a single node is 0; the 
height of any other node is 1 more than the max of 
the heights of its children.  Here are some AVL trees

height 0 height 1

height 0

height 2

height 1

height 0 height 0

height 0



Here is a tree that is not an AVL tree; the children 
of the root have heights that differ by 2:
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One issue with implementing AVL trees is having 
access to the height of each node.  We change the 
Node class so it has fields

E data;
int height;
Node left, right;

Or, for a map:
K key;
V value;
int height;
Node left, right;



We also change the insert() and remove() 
methods to adjust the height at each node on the 
path between the root and the modified node.  
The recursive version of the insert method is easy 
to modify.  After we come back from the recursive 
call we reevaluate the height:



private Node insert(K key, V value, Node t) {
if t is an empty tree {

Node s = new Node(key,  value);
s.height = 0;
return s;

}
else {

int comparison = key.compareTo(t.key);
if (comparison == 0) 

t.value = value;
else if (comparison < 0) 

t.left = insert(key, value, t.left);
else

t.right = insert(key, value, t.right);
// if t fails the AVL test adjust t
// set t.height
return t;

}
}



This much is easy; the interesting part of AVL 
trees comes lies in the adjustments we need to do 
when a tree becomes imbalanced.  Consider 
inserts.  We have a balanced tree and insert a 
node and the tree is then unbalanced.  Since 
inserting can add at most one to the height of a 
subtree this must mean that we have a node Z on 
the path between the root and the inserted node 
where the height of one child is 2 more than the 
height of the other child.  There are 4 possible 
cases:



a) The insertion was in the left subtree of the left 
child of Z

b) The insertion was in the right subtree of the left 
child of Z

c) The insertion was in the left subtree of the right 
child of Z

d) The insertion was in the right subtree of the right 
child of Z



Here is how we will deal with these cases.  In every 
case Z is the  node that fails the AVL condition after 
the insertion.  We let Y be Z’s tallest child, and X be 
Y’s tallest child.  The insertion must have  
happened in or below node X. 

Now let nodes a, b, and c be X, Y and Z ordered 
from smallest to largest key  values. As you will see 
when we draw pictures, nodes a, b, and c have a 
total of 4 children that aren’t themselves one of a, 
b, or c.  We let t1, t2, t3, and t4 be these children, 
in increasing order.



In all four cases we build the following tree and 
substitute it for node Z:
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For example, suppose we start with the following 
AVL tree:
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and we want to add 55 to it.
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Here is our answer: a new AVL tree incorporating 
our inserted value, 55:



It is relatively easy to verify that this is a binary 
search tree, that all of its nodes satisfy the AVL 
property, and that node b has the same height as 
node Z did before the insertion.  This means this is  
the only  adjustment we need to make to  restore 
the tree to the AVL property.



Remember that Z is the node that fails the AVL 
condition, Y is Z’s tallest child, X is Y’s tallest child

Case 1:  Y is Z’s left child, X is Y’s left child
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One of nodes t1 and t2 must have height h; 
the other has height h-1.



Putting these heights into the tree we build we see 
that every node satisfies the AVL property:
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One of nodes t1 and t2 has height h; the 
other has height h-1.
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Furthermore, t1 and t2 have the same relation to 
a as before, all of the values in t3 are greater than 
the value of b and less than the value of c, and t4 
remains the right child of c.  This means that the 
new tree is a Binary Search tree that satisfies the 
AVL property.



Case 2: Y is Z’s right child, X is Y’s right child.  
This is symmetric to case 1
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Case 3: Y is Z’s left child and X is Y’s right child:
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Case 4: Y is Z’s right child and X is Y’s left child; this 
is the mirror image of Case 3:

Z

Y

X

t1

t2 t3

height
h

height
h+2

height
h

height
h+1

One of nodes t2 and t3 has height h; the 
other has height h-1.

b

a

c

t4



23

17 45

9 21 32 61

4 13 2 
2

19

20

Consider this example, where we have just inserted 20.  
The left child of node 23 has height 3, the right child has 
height 1.

We assign our labels: Z is the node whose children 
fail the AVL property: that is 23; Y is Z’s tallest child: 
17, and X is Y’s tallest child: 21. 
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Once we have Z, Y, and X identified we  can label a, 
b and c as those same nodes in increasing order, 
and we identify t1 through t4 as the children of a, 
b, and  c.  We can now  rebuild the tree:
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It is easy to verify that this is a Binary Search tree 
and all of it nodes satisfy the AVL height property.


